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The static and dynamic properties of a chaotic attractor of a two-dimensional 
map are studied, which belongs to a particular class of piecewise continuous 
invertible maps. Coverings of a natural size to cover the attractor are intro- 
duced, so that the microscopic information of the attractor is written on each 
box composing the cover. The statistical thermodynamics of the scaling indices 
and the size indices of the boxes is formulated. Analytic forms of the free energy 
functions of the scaling indices and the size indices of the boxes are obtained for 
examples of a hyperbolic and a nonhyperbolic chaotic attractor. The statistical 
thermodynamics of local Lyapunov exponents is also studied and a relation 
between the thermodynamics of scaling indices and of local Lyapunov 
exponents is invetigated. For the nonhyperbolic example, the free energy and 
entropy functions of local Lyapunov exponents are obtained in analytic forms. 
These results display the existence of phase transitions. A phase transition is 
seen in the thermodynamics of scaling indices also. 

KEY WORDS: Chaos; natural measure; scaling index; symbol sequence; 
one-dimensional lattice system; thermodynamic approach; generalized dimen- 
sion; local Lyapunov exponent; generalized entropy; nonhyperbolic attractor; 
phase transition; scaling law. 

1. I N T R O D U C T I O N  

In order to characterize and understand chaos, (1) order parameters in 
chaos have been sought. Recently, three new quantities (the scaling indices 
of an invariant measure, (2-51 the time damping rates of a probability 
measure in trajectory space, (6,7) and local Lyapunov exponents of nearby 
orbits (8)) were found to characterize chaos, and methods similar to the 
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thermodynamic formalisms in equilibrium statistical mechanics have been 
developed for the calculation of these quantities. (9-12) By using ther- 
modynamic approaches to the, new quantities, many studies have been 
done on strange attractors, (13) such as the attractor of a chaotic dynamical 
system. (1~29) Such work has given important material for deciding whether 
or not the new quantities are capable of being order parameters. To be a 
good order parameter for chaos, a quantity must be capable of describing 
and characterizing qualitative changes of the attractor at the bifurcation 
point of a band merging, a crisis, or a saddle-node bifurcation of intermit- 
tent chaos. It has been found that the local Lyapunov exponents charac- 
terize these bifurcations as the occurrence of nonanalyticity in its free 
energy function. (25-28) But the correspondence between the bifurcations and 
the occurrence of nonanalyticity is not completeJ 18'28'3~ Nonanalytic 
behaviors have also been found in generalized dimensions (12'27'31) and in 
generalized entropies (19) on a nonhyperbolic chaotic attractor. (33/ 

On the other hand, relations between thermodynamic variables 
associated with the new quatities have also been studied. (12 16,32) For  a 
hyperbolic chaotic attractor of a two-dimensional (2D) map, it is known 
that the following relations hold(14'32): 

qo(7:l(q), v2(q)) = 0 (1.1). 

between the free energy function of local Lyapunov exponents A -  (A1, A2) 
[defined as in (4.8)] and the generalized partial dimensions 
Dj(q)- zj(q)/(q- 1) ( j =  1, 2), (34) and (12'15) 

gt(q) = ~(zl  = q - 1, z2 = 0) (1.2) 

between the free energy function of A and the generalized entropies 
K(q)- gt(q)/(q-1). (7) For a 2D map with constant Jacobian, it turns out 
from (1.1) that the nonanalyticity of the free energy function of A leads to 
nonanalyticity in generalized dimensions if (1.1) holds. (27) However, the 
above relations without any restriction on q may be incorrect for a non- 
hyperbolic chaotic attractor. It is of interest to see how the nonanalyticity 
of the free energy function of A correlates with the validity of (1.1) and 
(1.2). We do not have a certain rule to determine each direction of the 
generalized partial dimensions for a nonhyperbolic chaotic attractor, while 
for a hyperbolic chaotic attractor the generalized partial dimensions are 
measured at every point on the attractor in the directions tangent to the 
unstable and stable manifolds, respectively. (13) When the directions of the 
partial dimensions do not exactly coincide with those of the local 
Lyapunov exponents, we do not know whether (1.1) and (1.2) hold or not. 

Most of the many works using the thermodynamic approach to the 
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new quantities have been done on chaotic attractors in one-dimensional 
(1D) systems (9'16-23/ or numerically on strange attractors in higher-dimen- 
sional systems. (24-28~ In a 1D dynamical system, a chaotic attractor often 
has a trivial structure. The 1D system is less useful for understanding 
fractal structures of a chaotic attractor, but may be useful for under- 
standing singular behaviors of a local Lyapunov exponent on a chaotic 
attractor. (14'z~ After all, the 1D systems cannot say anything about the 
relation (1.1). With the numerical work it is difficult to obtain accurate 
results and this work is insufficient to provide conclusions, especially about 
the validity of the relations. We have only a few examples of a 2D chaotic 
attractor which can be exactly analyzed in terms of the thermodynamic 
variables. (12'16"29) Therefore, it is desirable to have further examples of such 
attractors and to examine the relations (1.1) and (1.2) on these attractors. 

The thermodynamics of scaling indices gives macroscopic information 
about the singularity of a natural measure on a chaotic attractor. In the 
formulation of the thermodynamics a set of small boxes is used to cover the 
attractor. (3"5t Not  much attention has been given to methods of making the 
covering; in some cases a partition of phase space into a uniform grid is 
used, (7"~5) in other cases a dynamical partition of equal mass, ~35) and so on. 
Singular structures of a strange attractor occur not only in the probability 
measure, but also in the geometry of the attractor. (1'~3~ In order to describe 
the geometrical singularity, Kohmoto  (H) introduced the size index of a box 
and developed the thermodynamics of the scaling index and the size index 
of a box. In this work, I consider a chaotic dynamical system generated by 
a 2D map which is invertible and piecewise continuous. In the 2D system, 
I will extend his formulation to partial variables and expand their statisti- 
cal thermodynamics concretely. In special examples, including a nonhyper- 
bolic chaotic attractor, I will analyze the statistical thermodynamics of 
local Lyapunov exponents and examine (1.1) and (1.2). 

This paper consists of six sections and two appendices. In Section 2, 
families of two-dimensional maps are introduced. I give a lemma for 
a natural measure on a chaotic attractor of the map. Local Lyapunov 
exponents are given and discussed in relation to an unstable manifold of 
the chaotic attractor. In Section 3, the statistical thermodynamics of scaling 
indices of the natural measure is constructed. A sequence of covers of the 
chaotic attractor is introduced and each element of the cover, i.e., a box, 
is represented by a symbol sequence. Not  only scaling indices (c~x, ~y), but 
also size indices (/?x,/~y) of a box are defined on the space of a symbol 
sequence. The free energy and entropy functions of c~v and/~v, v = x and y, 
are given. We get a relation between the free energy functions of ~ and of 
~v a n d / ~ .  The statistical thermodynamics of a time damping rate 7 is also 
given and a relation between the spectra of c~ and ~ is studied. Sections 4 
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and 5 give detailed calculations of examples, Section 4 for hyperbolic 
chaotic attractors and Section 5 for the nonhyperbolic case. The ther- 
modynamics of A as well as of e~ and/~v is exactly analyzed. In particular, 
for the nonhyperbolic attractor I give rigorous results for the free energy 
function ~b(z~, zz) and entropy function sA(AI, A2) of A. I also obtain a 
rigorous result for the free energy function of ~v and//~. Then, I find phase 
transitions in the thermodynamics both of A and of C~y and By. The phase 
diagram of A is described on the zlz2 plane. The relations (1.1) and (1.2) 
are examined and found to break down at phase boundaries, while they 
hold in some region on the z~z2 plane. Zeros of the partition functions are 
calculated and discussed in relation to the phase transitions. In Section 6, 
I reexamine (1.1) and discuss why (1.1) holds in some regions and not 
in others. Finally, I give a summary. In order to obtain sA(A~, A2) in 
Section 5, Appendix A is useful. Appendix B discusses a scaling form of A 
near the phase transition points. 

2. T W O - D I M E N S I O N A L  M A P S  

Let us consider the dynamical system generated by the invertible map 
of the unit square S =  [1, 0] | [0, 1] to itself: 

~n+l = ~(Xn ,  Yn), Yn+ l =- Y(Yn)  (2.1) 

X is a piecewise continuous function given by 

X(x ,y )=~cj+t~(y )  for (x ,y)eS~ ( ~ - 0 , 1 )  (2.2) 

where So = [0, 1 ] | [0, c) and $1 = [0, 1 ] | [c, 1 ], the constants ~c 0 and 
K~ are positive, and to(y) and t~(y) are single-valued Continuous functions 
on So and $1, respectively. Y is given as follows (see Fig. 1 ). 

0 
0 C y 

(a) 

u 

0 ~ c y 

(b) 
Fig. 1. Examples of the one-dimensional maps (a) (2.3a) and (b) (2,3b). 
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Case ,4(36)." 

Y(y) is a unimodal function that is continuous, strictly in- 
creasing on [0, c), Y(c)= 1, strictly decreasing on (c, 1], and 
Y(1 )=0  (2.3a) 

Case B: 

Y(y) is a piecewise continuous function that is strictly in- 
creasing on each interval of [0, c) and (c, 1], limy ~ ~. Y(y) = 1, 
and Y(c) = 0 (2.3b) 

Let F denote the mapping (2.1). The sufficient condition that F is invertible 
is F ( S ) c S  and F ( S o ) m F ( S 1 ) = ~ .  The generalized baker's trans- 
formation (37) is a special case of (2.1). 

An orbit generated by the 1D map Y governs the basic properties of 
an orbit generated by the 2D map F. Write Yj=-YJ(Yo) and 
(xj, y j ) =  FJ(x0, Y0). We have the following results. 

Result 1. Assume that Y has a periodic orbit co n = {yo, Y l ..... Yn-1} 
of period n. Then, F has a periodic orbit o~n of period n such that 
e~,= {(x0, Y0), (xl ,  Yl) ..... (xn 1, Y~-I)}. The map F has unique o~ if and 
only if Y has co n. 

Result 2. Assume that Y has a stable periodic orbit co n. Then, the 
corresponding orbit of F to e) n is stable, except for the case that o~ n runs 
on y = c .  

Result 3. Assume that Y has chaotic orbits on the attractor. F has 
a strange attractor and there are uncountably infinite chaotic orbits on the 
attractor which have the same y components and different x components. If 
and only if Y has a chaotic orbit does F have chaotic orbits. 

A(y; a) =- [0, 1] | Ey, y + a] is a rectangle on S. We write the area of 
F(A(y; a ) ) a s  Area{F(A(y; a))}. Assume that the map Y has a chaotic 
attractor and a unique, absolutely continuous invariant measure, denoted 
by P r ,  on the attractor. Then, F has a strange attractor f~ and a unique 
natural measure on ~ .  We write the probability on ~mF(A(y;a) )  as 
PF[F(A(y; a))].  We consider a family of maps which have different to(y) 
and t l (y)  and have the same ~Co, ~cl, and Y. Let o~ denote the family and 
contain the map *F = (*X, Y) such that 

•f/r X, f o r  

*X(x' Y )=(~qx  + l--~q, for 
O<~y<c 

(2.4) 
c<~ y<<. l 



262 Shigematsu 

k a m m a  4. F o r F a n d * F s ~ ,  

Area {VJ(A(y; a))} = Area{ *FJ(A(y; a))} 

PF[FJ(A(y; a))] = P*[*FJ(A(y; a))]  

=Pr[[y, y+a]] 

( j = 0 ,  1, 2,...) (2.5) 

( j = 0 ,  1, 2,...) (2.6) 

The y components of FJ(x ', y') and *Fe(x ', y') for (x', y') ~ A(y; a) are 
YJ(y'). If F~(x ', y') ~ S(ak) for 0 ~< k ~< j -  1, then *Fk(x ', y') ~ S(ak), where 
S(a)-So. Let L{[x',x"]; y'} be a segment parallel to the xaxis whose 
end points are (x', y') and (x", y'). Write the length of L as ILl. Since 

IF(L{ [x', x"]; y'})[ = ~c(o-) I x " -  x'l = I*F(L{ Ix', x"];  Y'})l 

for L{[x', x"];  y'} c S(a), we have 

J--1 

IFJ(L{[x',x"]; Y'})/= Ix"-x'l I] tc(a~) 
k - - O  

-- I*FJ(L{ Ix', x"];  y'})l ( j =  1, 2, 3,...) (2.7) 

when Fk(x ', y')eS(ak) for O<~k<~j-1, where we put ~(a)=tco.  There- 
fore, we obtain (2.5). It is obvious that (2.6) holds, because F and *F 
conserve the probability. 

Finally, we study local Lyapunov exponents around a reference orbit 
to = {(Xo, Yo), (xl, Yl), (X2, Y2),...} of F. The local Lyapunov exponents 
are given by 

(0xo) 
Aj(xo; n) -= ~ In \Sxo]  ej(x~ n) ( j =  1, 2) (2.8) 

where (Sxn/SXo) is the Jacobian matrix, ej(xo; n) its normalized right-eigen- 
vector, and F'"l the Euclidean norm. I have assumed the existence of the 
Jacobian matrix for all Xo with respect to the probability measure P(xo) of 
an initial value. Since a tangent map of F is a triangular matrix, the 
Jacobian matrix becomes 

8Xo n Y,(yk) 
k=O 

j l ,]) 
[I r'(y, 
i=0  (2.9) 
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where we put X~;k--(~?xk+,/C?zk) for z=x and y and Y'(y)=dY/dy. 
Therefore, we get 

A~(xo; n, F ) = 1  ,~1 In dY(yk) (2.10a) 
n k=o dYk 

1 n~,l c3X(x~, Yk) 
A2(xo;n, F ) = -  /_, in (2.10b) 

/ ~ k = O  ~ X k  

When xk falls into S(rT~) for each k (O~k<~n- 1), it turns out from (2.7) 
that 

A2(Xo, n, F) 1 ~ 1 �9 = -  ~ lntc(ak) (2.11). 
H k _  0 

Assume that o is an orbit of F � 9  Then any F � 9  has an orbit, the 
y components of which are the same as those of o. Since (2.10a) and (2.11) 
depend only on the y components of the reference orbit, the corresponding 
orbits of ~ to m have the same local Lyapunov exponents as o. 

The right-eigenvectors of (2.9) for the eigenvalues A~ and A 2 are 

/• II [Xy.lY'(yj)] ]-[ [xxsY'(yO] 
e , ( x o ; n , F ) = l j = o -  ~ - ~  k=s+~ ~ )  (2.12) 

1-  [I [x.;/Y'(yj)] 
j = 0  

and e2(xo; n, F ) =  (1, 0) r, respectively, where T means taking the column 
vector. I assume that the strange attractor contains a smooth line 
x= g(y; xn, y.) passing through the point x . � 9  in a neighborhood of 
x..  ('3'33) The direction tangent to the attractor at xn is given by the vector 
u,(x. ;  F): 

u l ( x , ; F ) =  Og(y; ' Y") ,1 (2.13) 
Y ~ Yn 

Consider an orbit o ' =  { .... (x;, y;), (x'~, Y'I),-.-, (x'., y'.)} which passes a 
t t ~ g  ! ! point (x,,, y',) on the line. Since xk+l-xk+l (xk, yD--X(xk, Yk) and 

Y'k+ 1-Yk+~ = Y(Y'k)- Y(Y~), one has 

\(@(Y;X")]~?Y /y=,~ =s~'oo= Y'(YJ)X';J k=j+l  ~1711 Y'(Y~)X~;k (2.14) 

where I assumed convergence on the right-hand side of (2.14). For suf- 
ficiently large n, the direction of e~(xo;n,F ) in (2.12) coincides with 
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Ul(X~; F), which is a vector tangent to the attractor at the last point of the 
reference orbit. (14) 

If m passes through a point where the derivative of Y vanishes, then 
we write Ax = -oo .  When the derivative of to(y ) or tl(y ) becomes infinite 
at some point, the Jacobian matrix (2.9) is not defined if m passes through 
this point. In this case, A is still defined by (2.10) if possible. As long as the 
reference orbit passed the divergent point of the derivative of to or tl in its 
past, (2,14) does not converge and the direction of el(xo; n, F) may be dif- 
ferent from ul(x~; F). Remark that the attractor is nonhyperbolic not only 
in the case where the attractor contains a vanishing point of the derivative 
of Y, but also in the case where the attractor contains a divergent point of 
the derivative of to or tl. 

3. T H E R M O D Y N A M I C  A P P R O A C H  

Assume that the map F has a strange attractor ~.  Then, the 1D map 
Y has a chaotic attractor and a unique, absolutely continuous invariant 
measure P r  on its attractor. F has the invariant measure PF on fl, related 
to Pr by (2.6). In this section, we construct the statistical thermodynamics 
of the scaling indices of the natural measure in the space of symbol 
sequence. (3s'38) Without loss of generality, we take *F given by (2.4) as F. 

3.1. M i c r o s c o p i c  Sta tes  of  Q and [3 

To study a probability measure on a strange attractor in terms of 
scaling indices, we first cover the attractor with a set of small boxes. 
However, it is ambiguous which boxes are chosen for the covering as well 
as how the boxes cover the attractor completely. We use a dynamical 
partition for the coveringJ 24'39) Divide the interval [0, 1 ] into two intervals 

[0, c) for a = O  
J ( a ) -  [c, 1] for a = l  

(3.1) 

Y is monotone and continuous on J(tr). We can partition J(O) and J(1) 
into intervals on which I1, is monotone and continuous: 

J(OlO- 2 ...ffk)~----J(ffl)O Y l ( J (o '2 . . .Ok)  ) for k = 2 ,  3 .... (3.2) 

Partition the unit square S into rectangles 

A(o'itx2 - �9 �9 o'k) = [-0, t ]  @ J(o-lo'2 .. �9 o'g ) (3.3) 

Each box is defined as 

s "''Crn; Crn+~-.-~,+m)--closure{F~(A(~rlcr2 .--an+,~))} (3.4) 
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The set of boxes f2,m, 

C(n, m ) -  {O.m(o':...o-.; O'n+ 1 ' '  "fin+m); 

Area{12,m(a ~ - . . a , ;  O'n+ 1 ""'  O-n+m) } ~&0} (3.5) 

is capable of covering ~ completely and consists of boxes of various sizes. 
C(n, m), called the cover of natural size, is slightly different from the 
dynamical partition of the attractor (3s) because the attractor may not run 
along the sides x = 0 and x = 1 of the unit square S. 

For simplicity, we put ~ = ( O ' l O ' 2 ' ' ' O ' n + m )  , ~ x = ( O ' l O ' 2 ' ' ' O ' n ) ,  and 
%=(a ,+ l - - -~ r ,+m) .  The box f2,m(a~;%) is a rectangle which has two 
sides parallel to the x axis. The size of a box is characterized by the 
horizontal and vertical lengths of the sides of the box, lx(%) and/y(%;  ~ ) ,  
respectively; generally, the box is not a rectangle. Then, le(%; ~ )  is defined 
as the vertical distance between the sides parallel to the x axis, while lx(~x) 
remains in the previous definition. If there exists a Markov partion of the 
attractor of Y, which is given by {J(~r~a2... ~rM)}, then it turns out that 

ly(~y;~rx)=ly(~y)=lJ(cr,+t...a,+m) t for n,m>~M (3.6) 

A Markov partition of an attractor of Y is a set of intervals all endpoints 
of which are mapped on the endpoints by i1(40) In the following, I assume 
the existence of a Markov partition. As n and m increase, the sizes of the 
boxes decrease exponentially fast. These exponential dampings are charac- 
terized by the size indices of the box, defined on each box as 

1 
flx(~x)- - l l n  lx(~x), fly(%)=- - - - ln ly(%)  (3.7) 

n m 

The natural measure on the attractor of F is described in terms of the 
natural measure of Y from Lemma 4. When the probability on f~ covered 
with g2,,,(~x; %) is denoted by PF(~x; %) and the probability of Y on J(~r) 
by Pr(cr), (2.6) becomes 

P(ox; %) =- PF(%; %) = Pr(o) (3.8) 

Scaling indices ~ = (ex, %) of the natural measure of F are defined on each 
box by 

-nc~x(*x; %) flx(ex) - m%(%; ~x) fly(%) =- In P(~x; %) (3.9) 

which measure the singularity of the probability P(%;  %) with respect to 
the Lebesgue measure of the box. 
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3.2. Free Energy Functions 

I introduce a new probability measure p on the cover C(n; m), so that 
the statistical thermodynamics of ~ and p is constructed on the cover(18): 

p(~; q, ~)=- [1/2nm(q, ~)] exp[--qg(~;  ~, n, m)] (3.10) 

where ~ = (%, Ty), the interaction U(~) is given by 

qU(g) - n[qc~x(t~ x ; gy) fix(gx) - rxflx(~x)] 

+ m [qO~y(~y ; I~x) fly(l~y) -- "~yfly(~y)] (3.11) 

and the normalization factor Znm(q, ~) is 

Z~m(q, ~)---- ~ '  exp[--qU(~; ~, n, m)] (3.12) 
{O'1 -" �9 t r n + m }  

The summation in (3.12) must be taken over all elements of C(n, m). 
The statistical thermodynamics of a and p can be treated in a one- 

dimensional lattice system. Consider the space of symbol sequence, 
O =- {0, 1} z', which is a semi-infinite product space of {0, 1 }; Z '  is the set 
of all positive integers. OK is the subspace of O that consists of every cylin- 
der set of length K which starts from the first lattice point. O,m in (3.4) 
gives a mapping of C(n,m) to OK, K = n + m .  As O* is the image of 
C(n, m), the mapping given by (3.4) is a bijection from C(n, m) to O*; 
then, an element of O* is a cylinder set of length K. We may consider the 
space Ox as the configuration space of Ising spins on a one-dimensional 
lattice of size K. The scaling indices a and the size indices [I of a box are 
quantities defined on O*, such as a specific magnetization in the spin 
system. U(ty) corresponds to the Hamiltonian of spin, q to the inverse tem- 
perature, and ~ to the external forces conjugate to II. (1~ However, the 
interactions among "spins" are generally inhomogeneous and anisotropic. 
And there is no translational invariance; we will see examples in Section 4 
and 5. In the language of statistical thermodynamics, (41) we call p(~; q, ~) 
the finite-volume Gibbs states of a and [I and Z~m(q, ~) the partition func- 
tion of a and II. Note that (3.10) is not an invariant measure of F such as 
discussed in refs. 40. 

It is obvious from (3.12) that ~'nm(q, ~) is concave, monotone decreas- 
ing for q, and monotone increasing for rv (v = x and y). Define the free 
energy function of .~ and fl~ (v = x and y) as 

Gx(q, rx; Zy) - - lim lim 1 In "~nm(q, "Cx, Zy) (3.13a) 
m ~ o o  n ~ o ~  n 

Gy(q, z y ; r ~ ) - -  lim lim l l n Z , m ( q , z ~ , z ~ )  (3.13b) 



Chaotic Dynamical System 267 

assuming the existence of the the rmodynamic  limits. As the a t t ractor  of Y 
has the Markov  parti t ion, we have 

Gx(q, z~; "Cy) = G~(q, Zx), Gy(q, "cy; %) = Gy(q, ry) (3.14) 

Gv(q, r~) is mono tone  and c o n v e x ,  ~4L42) increases with respect to q, and 
decreases with respect to z~. 

The definition of a in (3.9) is insufficient for n and m fixed, because ct~ 
and C~y cannot  be uniquely determined on each box. Redefine c~ and ~), as 

~ ( , ~ x ) / L ( - ~ )  -- - ! In e / , ~ x )  (3 .15)  
/7 

cq,(6~.; 6x) fly(%) - __1  In P(%; %) (3.16) 
" " - m PF(6,:) 

for n and m fixed, where PF(~x) is the probabil i ty on f2,(6x) given by 
putt ing m = 0 in (3.4). Pv (6 )  is written as 

P r ( 6 )  = p r(o-1... 0-M) 
n + rn  ~4// 

j = l  
Q(aj+~ --. %+ M; %- . .  a j+M_ ~) (3.17) 

where the transit ion probabil i ty is given by 

Q ( a 2 . . . a M + I ;  ~ 1 7 6  Py(o-1 "--aM) 
(3,18) 

For  m >> M, (3.16) becomes 

% ( %  ; 6x) fly(%,) ~ - 1 In ~ '  P(*x ; %) = %(*.v) fly(%) 
m {,~x} 

(3.19) 

Therefore,  the probabil i ty that the scaling indices and the size indices of a 
box take values in [a,  a +  de ]  and [[1, [~ + dll] is factorized as 

W(a,p;n,m)dadp~ ~I W~(cq,,flv;n~)dcx~d~v for m>M 
v = x ,  ) ;  

where n x = n and ny = m. We assume the existence of the limits 

s~;x(~x, fix) = lim lim 1 In W(~t, 1~; n, m) 
m ~ o o  n ~ o : 3  n 

s~ ;y (%,  fly) = lim lira __1 In W(~t, p; n, m) 

(3.20a) 

(3.20b) 
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The large-deviation theory has proven the existence of these limits for some 
c a s e s .  (41~ We call s~;~ the entropy function of ev and flu. Having the limits 
in (3.20), we also have the limits in (3.13) and can write in the partial 
forms 

G~(q, %) = min { (q-1)~f lv-%fl~-s~;~(~v,  flv) } (3.21) 

for v = x and y. The thermodynamics of a and [El is obtained from G~(q, %). 
The averages of random variables such as cr and /~v over the Gibbs 
ensemble (3.10) are given by 

' ( 3 . 2 2 )  

3.3. Generalized Partial Dimensions 

G~(q, %) is continuous, monotone increasing for q, and monotone 
decreasing for Zv. Since G~(q, zv) tends to + ~ for r~ ~ - ~  and to - o ~  
for Zv ~ + ~  (Fig. 2) 

Gv(q, % ) = 0  (3.23) 

/ 

/ q 

Fig. 2. Free energy funct ion Gv(q, %) of ~v and  fl~. The funct ion G~(q, zv) is cont inuous ,  

m o n o t o n e  increas ing  for q, and  m o n o t o n e  decreas ing for %. Gv(q, % ) =  0 has  a unique  solu- 
t ion % = %*(q) which  is a con t inuous  and  mono tone - inc reas ing  function of q. Since Gv(q, z~) 
is convex, z*(q) is convex. The  figure d isp lays  G~(q, zx) of (4.5a) wi th  2 0 =  3.0, 2 1 =  1.5, 
~c 0 = 0.35, and  K 1 = 0.2. The heavy line denotes  z x = z*(q). 
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has a unique solution rv = ~*, where ~* is a continuous and monotone- 
increasing function of q. The function r*(q)  is convex because Gv(q, ~)  is 
convex. The generalized partial dimensions D~(q) are defined by 

1 
D~(q) =- ~*(q) (3.24) 

q - -1  

The generalized dimension D(q) is the sum of Dx(q) and Dy(q): 

D(q) = D~(q) + Dy(q) (3.25) 

The attractor of Y is equal to the image of the projection of the attrac- 
tor of F on the y axis. It is easy to construct the statistical thermodynamics 
of the scaling index and the size index of a box on the attractor of Y with 
respect to the cover {J(o-l'" 'o-m); ]J(o-l"" O'm)] r  The scaling index c~ 
and the size index/7 of a box and a finite-volume Gibbs state p ( ~ ;  q, r)  are 
defined on each interval J(~l),  f~l = (O-1 " ' "  o -m) ,  by 

in Py(~i)  
c~(~l)-= In IJ(~l)J' /7(~1)- - l l n m  IJ(~) l  

1 
P("i ; q, ~) - Sm(q, r) exp{ -- m/?(~l) [qc~(~l) -- r ]  } 

where the normalization factor 2m(q, Z) is the partition function of c~ and 
/~. Then, it is obvious that the statistical thermodynamics of ez and/~y is the 
same as that of ~ and /~. Generally, there exists some ambiguity in the 
definition of partial dimensions. For  a chaotic attractor of F the direction 
of ul in (2.13) may be different from the y direction. If the attractor does 
not have a point where u~ is parallel to the x direction, Dy(q) is equal to 
D~(q). However, the difference of Dy(q) and D~(q) is essential in the other 
case. Remark that D~(q) has usually been used in the literature. (12'a4'32) 

3.4. Generalized Entropies 

Pr(~la2""  an) gives the probability that a trajectory passes through 
the boxes S(0) and S(1) in the phase space in the order of S(al) , S(a2),... , 
and S(o-n). Since a time damping rate of the joint probability is defined by 

?(al a2.-- ~n) = - 1_ In P Y(o-1 or2 �9 "" ~n) (3.26) 
n 

it turns out that ?(r  '"o-~)/?x(o-1 " " r  The free energy 
function of 7, 

~P(q)= - lira -lln Z '  [Pr(o-i ' "o-n)]  q (3.27) 
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is related to the free energy function of c~ x and fix by 

~(q) --- Gx(q, z = 0) (3.28) 

so that we have 

gt(q) = min {(q - 1) -y - max [s~/~;x(c~x, 7/~x)] } (3.29) 
7 ~ x  

h(7) and f lx fx(~,  fix) are the Legendre-Fenchel transforms (4~) of ~(q) and 
Gx(q, zx), respectively. Then, (3.29) leads to the relation 

h(7) = m a x  {(7/ct~)f~(c~x, 7/c~x)} = (7/c~*)f~(~*, 7/c~*) (3.30) 
ct x 

where c~* is the value of e~ giving the maximum of (3.30). We sometimes 
have examples where ~(tr~) depends explicitly on flx(~). If ~ is related to 
fix in a unique way, c~ and ? have a one-to-one correspondence. Then, we 
have 

h(?)/y = f~ (c~x(7))/ct~(?) (3.31 ) 

This relation holds when the random variables 7 and c~ are completely 
dependent. (~5'~6) In general, 7 and c~ have an independent part, so that 
(3.31) does not hold and must be rewritten as (3.30). 

3.5. Theorem 

In this section, we have studied the attractor of the map (2.4). As long 
as the statistical thermodynamics of a and p is defined on the cover (3.5) 
by (3.7), (3.10), (3.11), (3.15), and (3.16), all results still hold for all chaotic 
attractors of maps belonging to the same 4 .  We conclude with the 
following result. 

T h e o r e m  5. For  F, F ~ ~,, the statistical thermodynamics of a and 
p on a chaotic attractor of F with respect to the cover of natural size is 
equal to that on a chaotic attractor of ~" with respect to the cover of 
natural size. 

From the definition of the statistical thermodynamics of a and ]l and 
Lemma 4, it is obvious that the theorem holds. Note that this theorem still 
holds even if there exists no Markov partition of the attractor of Y. 

4. EXAMPLES: HYPERBOLIC ATTRACTORS 

In this section, I give two examples which are attractors of piecewise 
linear maps and analyze the statistical thermodynamics of a and p con- 
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cretely. The attractors consist only of hyperbolic points. The statistical 
thermodynamics of local Lyapunov exponents is also studied in relation 
(1.1). 

4.1. Example 1 

Consider (see Fig. 3) 

X(x, y) = ~CoX, Y(y) = 2 0 y, if 0 ~< y < c 
(4.1) 

X ( x , y ) = t q x + l - t q ,  Y(y)=Z~(1-y) ,  if c<<.y<~l 

where Z o = 1/c and )-1 = 1 / ( 1 -  c). The mapping (4.1) has the same fractal 
structures of a and p as the attractor of the generalized baker's transforma- 

C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 
0 X 0 Ko I-K, 1 0 1 

(a) 

Y 

0 

/ 
/ 

( C 
J(011o) J(111o) 

(b) 

J(~o) 

Y 

Fig. 3. (a) Schematic illustrating the mapping (4.1). (b) the one-dimensional map Yin (4.1). 
On using Y, the interval [0, I] is partitioned into small intervals. Both intervals of J(0110) 
and J ( l l l0 )  are mapped onto J ( l l0)  under the mapping. 

822/59/1-2- 8 
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tion. This example is therefore instructive. Following Section 3.1, we obtain 
C(n, m), which is isomorphic to OK, K= n + m. The length of the interval 
J ( a l ' ' '  erK) is 

K 
IJ(al '"  "aK)l = I-1 {1/),(ffj)} (4.2) 

j = l  

where 2(a) = a;~l + (1 - r 2o for ~ = 0, 1. Since the natural measure of Y is 
the length of an interval, (3.8) becomes 

P(al ""~r,, ; an+ 1"'" O'n+m) = ]J(al""" a ,  +m)] (4.3) 

The attractor of F has a uniform scaling index in the y direction, ex(Ox) is 
dependent explicitly on flx(~x): 

ex(nx) flx(ox) ln(xo/xl) + flx(Ox) ln(2o/21) 

= (In 21)In Ko-  (In 20) In ~Cl = A  (4.4) 

The free energy function of ~ and fly becomes 

Gx(q, z ) =  - ln[(1/2o)  q (1/Xo)~ + (1/21) q (l/K1) T] (4.5a) 

Gy(q, "c) = - l n ( 2 ~  - q  + } ~ - q )  (4.5b) 

Applying (3.23) to (4.5) yields 

1 1 
e x p ( - z *  In ~Co) + 2~ e x p ( - z *  In x~) = 1 (4.6a) 

Zy = q - 1 (4.6b) 

Since Gx(q, ~) is differentiable, it is easy to obtain the Legendre transform 
of Gx(q, "c). Using (4.4), we have the explicit form off~(~x), which is equal 
to the Legendre transform of z*(q). Relations (4.6a) and (4.6b) are the 
same as those obtained for the generalized baker's transformation. (3'5) 
Since (4.4) relates ~ and fl~, (3.31), i.e., the relation between the spectra 
of c~ and 7, holds.(16) 

Local Lyapunov exponents are given by (2.10). The local Lyapunov 
exponents determined during a time interval m have the same values for all 
reference orbits whose initial values are on the part of the attractor 
included in the box ff~nm(~x'~ ~2.): For any Xoe f~ ~ ff'~nm(~x; I~y), 

1 
Al(xo;m)= Al(Cry;m) =-- i ln2(~rj+~) 

m j--1 

1 m 
A2(Xo; m)  = A2(~y ; m) ~ - -  ~_~ in K(aj+~) 

mj_~  
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Note that A~(ey; m) is equal to the size index /~y of the box. A relation 
between A1 and A 2 similar to (4.4) holds: 

A l(gy ; m) ln(tCo/tcl) - A2(ey; m) ln(2o/21) = A 

The free energy function of A is defined by 

qs(Zl 'Z2)=- l im, -~-n l ln{fdP(x~ I 

(4.7) 

2 ]} 
- n  ~ zjAi(xo;n ) (4.8) 

j = l  

As (4.3) gives the probability of the initial value, it turns out that 

~(zl ,  z2)= -ln[-(1/2o) z'+l (1/~co)z2+(1/2~) z~+l (1/~q) z2] (4.9) 

Comparing (4.5) and (4.9), we can write 

Gx(q, ~) --= ~b(q - 1, ~) (4.10) 

Using (4.6b) and the definition of z*, we get 

qs(z*, ~ * ) = 0  (4.11) 

This corresponds to the relation (1.1) obtained by Morita etal. ~14) Note 
that (1.1) and (4.11) are not equivalent, z~(q) and %(q) may be different 
from L*(q) and z*(q), respectively, because u~ and u2 are not always 
parallel to the y and x axes, respectively. Theorem 5 says that the statistical 
thermodynamics of a and p is invariant for the attractors of the maps 
belonging to the same family o~. Therefore, (4.11) may hold on the non- 
hyperbolic attractors containing homoclinic tangency points, where the 
difference of ~1 and c~y seems to be crucial. It is obvious from (3.28) and 
(4.10) that (1.2) holds. 

4.2. Example 2 

Consider (see Fig. 4) 

X(x ,  y )  = ~oX, 

X(x ,  y )  = KoX, 

X(x, y) = ~cl(x-- 1) + 1, 

Y(y)=2ay+b, 

Y ( y )  = & ( y  - b) + c, 

r ( y ) = ; ~ c ( y - c ) ,  

if O4 y<b 

if b<~ y<c  

if c<<. y<~l 

(4.12) 

where )oa = (e-b)/b, 2b = (1 - c ) / ( c -b ) ,  and 2c= 1/(1 - c ) .  The C(n, m) of 
(4.12) does not contain the boxes labeled by such symbol sequences as 
a j - l = a j = c r s + l  = 0  for j - - 2 ,  3 ..... n + m -  1. The subspace O* of symbol 
sequence, isomorphic to C(n, m), is 
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1 

1 
X 

0 1 

(a) 

0 1 

Fig. 4. 

Y / 
/ 

/ 

oY 
I < 

J(O01O) 

/ J,o,0, 

b c 1 y 

J(1010) 
(b) 

(a) Schematic illustrating the mapping (4.12). (b) The one-dimensional map Y 
in (4.12). 

2 O*=((alO2" ' 'OK);  O-je{0,1)  and O-2 l-~-O-2-t-O-j+l~0 for all j )  
where K- -  n + m. The length of the interval (3.2) is given by 

IJ(o-, "'o-K)l = IJ(O-K 10-K)I 
X--2 1 
I-I for (o-1"'" OK) e O* (4.13) 

s=l ;,(o-jaj+ 1) 

where 2(o-o') = (1 - O-)(1 - O-') 2a + (1 -- O-) O-'2b + a2c for O-, O-'e {0, 1 }. The 
probabil i ty measure is given by 

PY(GI"'" O-K) = [J(o-1 """ 0"K)[ for (o-1 '"  O-K) ~ O* (4.14) 
[J(O- K-1 O-K)] 
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The interaction can now be written explicitly as 

qU(~)=  ~, {q [ (1 -c r j ) (1 -~ r j+ l ) ln )~  a 
j =  1 

+ (1 - a j )  aj+l In 2b + a j ln  2c] 

+ %[(1 - aj) in ~:o + oi In ~q] } 

+ ( q - r y )  ~ {(1-%+~)(1-aj+~+.)ln).~ 
j = l  

+(1-aj+.)%+~+~lnAb+oj+.ln2,)+O(1) for o ~ O *  

(4.15) 

The interaction is like the Hamiltonian of a two-component (i.e., A and B 
atoms) alloy in a one-dimensional lattice system: It is possible only for a 
B atom to occupy a lattice point at the center when A atoms occupy the 
lattice points at both sides. There are interactions between the nearest- 
neighbor atoms. The strength of the interactions as well as the chemical 
potential of each atom is different between the first n lattice points and the 
others. Thus, the system has no translational invariance. 

By using the transfer matrices 

0 22%:o ~ 0 t 
Mx(q, "c) =_ 0 0 ~bql(-,O ~ (4.16a) 

/~c ql~ 1 -r ~cqN71 "c ~ c qK~ lC/] 

M y ( q - z ) -  Mx(q-'c, 0) (4.16b) 

we can write the partition function as 

3,,,,,(q, zx,'c.v)=alM~(q, rx) M~-2(q-zy ,  O) a2 (4.17) 

where a l = ( 1 ,  1, 1) and a2 is a three-dimensional column vector with 
positive elements. The maximum eigenvalue of My gives the free energy 
function of c~ v and fly (v = x and y): 

0 = exp[ -3Gx(q, r ) ]  - , ~cq l s  r e x p [ - 2 G x ( q ,  z)] 

__ ( 2 b 2 c ) - - q  (/~0 K~ 1 )--r  e x p [ -  G:,(q, z)] 

- -  ( l ~ a ~ . b , ~ c )  - q  (g2 /~ l )  z (4 .18a )  

Gy(q, r) = Gx(q - r, O) (4.18b) 
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* satisfy By their definition, z* and zy 

,~ -  q e x p ( - z *  in/~1) "~ ( ~ b ~ ' c )  - q  exp[ - z *  ln(~CoXl)] 

+ (2a2b2c)-qexp[--Z * ln(xZrcx)] = 1 

z * = q - -  1 

The free energy function of A is written as 

~(z~,z2)= - lim 1 In ' 
m . o~ m - - 1  } j =  l ~'( O'jO'j + l 

Using Mx(zl + 1, z2) in (4.16a), we get 

qS(zl, z2) = Gx(zl + 1, z=) 

(4.19a) 

(4.19b) 

+ 1 1 z2 ]} 
(4.20) 

(4.21) 

Thus, we have the relation in (4.9) again. From (4.19), it turns out that 
(1.1) and (1.2) hold. 

We have used the symbol space of {0, 1 } to study the strange attrac- 
tors of F. Other symbol spaces may be used for simplicity. For example, 
the analysis in this subsection can be easily done by using the new symbol 
space of { - 1, 0, 1 }, each element of which corresponds to each interval of 
the minimum Markov partition of the attractor of Y. For the attractor of 
F whose Y is given in Fig. 5, the analysis of a and I] on C(n, m) of (3.4) 

Y 

I 

0 

/ 
Z 

a 1 a 2 a 3 a 4 C = a 5 a 6 Y 

Fig. 5. A one-dimensional map Y in F. The parameters aj must satisfy suitable relations. The 
attractor of Ythen  has Markov partitions {[%-1,  a:) for 1 ~<j~<6 and I-a6, 1]} and {[0, ax) , 
[a l ,  a3) , [a3, a5), [a5, 1]}. 



Chaotic Dynamical System 277 

is difficult because a(~) and p(a) yield long-range interactions between 
symbols at different lattice points. In general, let us assume a piecewise 
linear map of Y has a proper Markov partition with k elements such that 
the slope of Y is constant on each of its elements. We also assume Y is 
mixing. Generate a dynamical partition of Y from the proper Markov 
partition. And construct a cover, of natural size, of the attractor of F. 
Then, the free energy functions of C~v and/3~ and of A are written in terms 
of the logarithm of the maximum eigenvalues of k x k irreducible non- 
negative matrices. Each element of the k x k matrices is an analytic function 
of (q, zv) or (zl, z2). From the Frobenius theorem of a k x k irreducible 
nonnegative matrix, (43) it turns out that the free energy functions are 
analytic. Therefore, there is no phase transition in the thermodynamics of 

and p and of A on the attractor of a piecewise linear F with the proper 
Markov partition of Y. Of course, in the limit k ~ oe, a phase transition 
may occur in the thermodynamics. The result obtained by Mori et al. ~2~ 
holds for just this case. 

5. A EXAMPLE:  A N O N H Y P E R B O L I C  A T T R A C T O R  

Consider (5.1) as an example of a nonhyperbolic chaotic system (see 
Fig. 6) 

X(x, y)=~oX, Y(y)=4y(1-  y), for O<~ y < c = l / 2  
(5.1) 

X ( x , y ) = ~ q ( x - 1 ) + l ,  Y (y )=(2y -1 )  2, for c<~y<~l 

The cover (3.4) is used and the statistical thermodynamics of a and 11 is 
studied on the attractor of this system. The free energy functions of c~ v and 
fl~ and of A are obtained analytically. The entropy functions of e~ and fly 
and of A are also obtained in analytic forms. We find the first-order phase 
transitions in the thermodynamics of ~y and of A. Zeros of the partition 
functions are studied in relation to the phase transitions. A scaling form of 
the mean value of ey around a phase transition point is given. 

5.1. Stat ist ical  Thermodynamics  of a and [3 

The cover of natural size, C(n, m) in (3.4), is isomorphic to OK, 
K =  n + m. In order to write the length of the interval J(~l ~2""  ~k) and the 
probability measure Pr(a 1~2... o-k), we use the mapping V conjugate to Y: 

V(u)=S2u for 0~<u< 1/2 
(5.2) 

~2u - 1  for 1/2~<u~< 1 
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1 

Y 

0 

.,e, ";*....: ~ ~.r162 

[ . . : .  ~ . .  L" g t',t~'m'a ~,q 

D, g v J.. (:,~..~.':Z,,~.6 :*:I 
: "e:,'. '" rr : I  

0 1 
x 

u 

Fig. 6. (a) Schematic 

0 

F 

0 lq 1 -~  1 

F 

(a) 

# 
/ 

J(o~oo) 
(b) 

illustrating the mapping 
in (5.1), 

/ / 

/ 
1 

JO~ oo) 

(5.1). (b) The 

0 1 

r 
J (1 oo) 
2L_ 

Y 

one-dimensional map Y 

The conjugacy from V to Y is 

y = sin2(zu/2) (5.3) 

Using the binary expansion of u e [0, 1 ], we write 

J ( o - I  O-2 " " " O ' k )  

= ( s i n 2 I ;  ~ aj2 Jl ,  s i n 2 I ; ( 2  k +  ~ a,2 J ) ] )  
J = l  j = l  

except for all o-j = 1 

Since the natural  measure of V is the length of an interval, we have 

(5.4) 

Pr(al o-2 " " �9 o-h) = 2 -~ (5.5) 
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The dynamical partition of equal mass leads to 

~ x ( ~ )  fl~(Ox) = ~y(~y) fly(~y) = In 2 (5.6) 

The partition function is written as 

~'~nrn(q, T,)= F ( l / / g O ) Z ' t  "~ - ( i/Kl)~Xln e - ( " + m ) q l ~ 2  

x [sin(2-m-lrc)] ~ sin 2 - m - i q  - a~+,2 -k 
{~y} k = 2 

(5.7) 

The free energy function of ex and/3~ turns out to be 

Gx(q, ~ )  = q In 2 - ln[(1/~o) ~-~ + (1/tq) r (5.8) 

Changing the summation in (5.7) for the integration, we get 

1 1 - e x p [ - m ( 1 - z y ) l n 2 ]  
Gy(q, zv). = (q -- 1 -- ~y) In 2 -- 2im~ --m in 1 --z ,  (5.9) 

The limit in (5.9) yields the nonanalyticity of Gy(q, ry) at ry = 1. Equa- 
tion (5.7) can be written as 

Z,,,(q, r = - -  + e x p [ - ( n + m ) q l n 2 ]  
\ t e l /  J 

1 
x B ~  { 1 - e x p [ - m ( 1 - r y )  ln 2]} exp[m(1 +ry)  ln 2] 

(5.10) 

for sufficiently large m, where B,-, O(1). The form Offx(ex) is the same as 
that obtained for the generalized baker's transformation. (3) One can obtain 

fy(c~y) from the inverse Laplace transform of (5.10). Actually, the entropy 
function of fl becomes 

= - - f l + l n 2  for l n 2 < f l < l n 4  (5.11) 

Using (5.6) and flyfy(C~y) =s~;~(fly) + %, we get (Iz) 

f~(O~y) = 2 0 r  - -  1 for 1/2 ~< ~y ~< 1 (5.12) 
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The definition of z*(q) leads to 

e x p ( -  z* in ~Co) + e x p ( -  z* In ~cl) = 2 q (5.13a) 

= ~ q - 1  for q~<2 
"~y*(q) (5.13b) 

q/2 for q > 2  

~y 

transition. In fact, the mean and variance of ey 
large m as (see Fig. 7) 

(~y>(q, ry; m) 

= (ln 2)<flT~)(q,  vy ;m)  

We see the first-order phase transit ion in the thermodynamics  of 
from (5.9) or  (5.13b), while the thermodynamics  of ~x has no phase 

are written for sufficiently 

e z d  1 
d z - - e  z with x=_m(Zy--1)ln2 (5.14a) 

Z 

for x >  1 

l n 2 )  x +  . . .  for Ixl<l (5.14b) 

for x <  - 1  

x ;x 
e X - 1  e x -oo 

1 
. . .  

= l n 2 +  1 - ~  

1 
1 - ~ - ~ +  , . .  

.02 i "'"~', 
<(Ao02> 

.01 

0 
- 5 0  

I 

.5 

0 50 • 

Fig. 7. The order parameter ~(y shows a first-order phase transition at ~y= 1. <ay) and 
<(A%) 2) have scaling forms with x=m(Zy-1)ln 2. The dotted line denotes (ln2)/<fls)~ 
where (fly) has the same scaling form with x as <A1) of (B.5). The scaling form of <~y) is 
different from (ln 2)~<fly). 
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( (AC~y)2)(q, ry; m) 

(m In 2)2 f .  ft 
~ dt ~',m(q, Zx, Z) dz-- (~y)2 

- Z.m(q, r ~ ,  r ' t 'y)  - -OO - -  

= ~ - ( l n 2 )  2+ 3(ln2) 2 - 1 n 2 -  x 

I53 1 ]  - ] -~( ln2)2-31n2 - x2+ ... for Ix [< l  

(5.15) 

As m tends to infinity, (~y) becomes discontinuous at ry= l. m((A~y)2), 
the mean squared fluctuation of Cry, grows to the size m of system for 
Zy ~ 1, while it decays proportional to m-1 out of the transition region. 
Relations (5.14) and (5.15) show that a finite-size scaling law for the first- 
order phase transition holds. It is easy to calculate the scaling forms for the 
mean and variance of fly. Note that the scaling forms of (ey)  and of 
(In 2)~(fly) are different. 

Let us consider the interaction of C~y and fly: 

- mqC~y(~y) fly(%) - mzyfly(ay) 

= mqln 2 + r y l n  [sin(2-m-~g)l 

+ry(1-~r~+n)ln s i n [ ( 2 - m - l +  ~ a~+n2-~)~ 1 
k = 2  

+rya~+,,In s i n { [ 2 - m - l +  ~ (1--ak+n) 2 - k ] ~ }  (5.16) 
k = 2  

The first two terms of (5.16) are independent of which symbol, 0 or 1, 
occupies each lattice point. The last two terms, denoted by A U, depend on 
the configuration of symbols occupying all lattice points. Almost every con- 
figuration of symbols has A U--~ O(1)x ry. The configuration that identical 
symbols successively occupy from the ( l+n ) th  lattice point to the 
(k+n)th,  called a cluster of size k,  has A U ~ k z y l n 2 ;  these terms 
correspond to the square root divergence of the probability density on the 
attractor of Y at y = 0  and y =  1. However, a cluster of size k has 
A U ~  O(1)• when the symbol at the (1 +n)th lattice point is different 
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from the symbol of the cluster. Thus, the system is nonuniform. For ry > 1, 
clusters growing from the (1 + n)th lattice point up to the size m of the 
system overcome all other configurations and dominantly contribute to the 
free energy function. For ry < 1, the contribution to the free energy comes 
equally from all configurations, so that the number of configurations 
becomes important. Similar facts were pointed out by Katzen and 
Procaccia in their study of the attractor of the fully developed logistic 
map.(~7) 

5.2. Local Lyapunov Exponents 

Let us consider the local Lyapunov exponents given by (2.10). We 
write A 2 determined during a time interval k (k ~< m) as 

1 k 
A:(~y ;k )=~  ~. In ~:(a++n) (5.17) 

j = l  

when an initial value of the reference orbit belongs to f2,,,(~x; %). On the 
other hand, two reference orbits which have initial values of different Yo 
give different A1 even if the initial values belong to f2,m(~x;~y ). We 
consider 

1 Fly(O'k+l+....~n{Tk_..~W2+n_'_--O'm+n)~ (5.18) 
J]l(~y; k)--- kin  t_ ly(c71+n~72+n...ffm+n ) J 

As m--+ 0% Al(~y; k) tends to Al(X0; k) for Xo s s ~y). We study the 
statistical thermodynamics of A1 and A 2 where the Gibbs ensemble and the 
partition function are given by ( m) ~y;zl,z2,-K=r 

1 
= ~k(zl, z2; r) PY(~Y) 

xexp{-k[zlTll(~y;k)+z2A2(~y;k)] } (5.19) 

..~k(Zl, Z2; r) 

= ~ P~.(~sy) exp{-k[z~71~(~y;k)+z2Az(%;k)]} (5.20) 
{,,y} 

The free energy function of A1 and A 2 is defined by 

2 2 ; , t -  - l i r a  1 
m 

In Ek(zl, z2; r) with ~- = r fixed (5.21) 
k+oo 
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For k and r~> 1, (5.20) can be written as 

~k(Z1, Z2; F) 

~ 2 - " 2  kzl 2 2 H 
;=2  {~,+, . . . .  } . = , + 1  L ~ ( a . ) J  

sinE2 'Tz+d({ f } ;~m)]  
+ [ ( 1 ) ; - 1 3  ~2 sin[2~({ff}; k, m)] -"} (5.22) 

where ff _= 1 -- c~ and 

~({cr};i,m)=_(2 -m 1 i- ~- s e92-J )~  
j = i + l  

The Jordan inequality leads to the following inequalities: 

2 ( ' -1)<s in[2  5 r + ~ ( { ~ } ; i , m ) ] < ~ 2  (;-1) 

Using these inequalities in (5.22), we get 

F < E.k(zl, z 2 ; r ) < ~ ' F  for z l ~ 0 ,  respectively (5.23) 

where we put 

~ = ~  m~ ~1 ~ [ ( , _ / ~  + ( , _ / q  ~ ' 
i=2  L\Ko/ \KIJ J 

~W,__yz2(~o3"~+(ay'2(a3~l 
L\~:o/ ',,KI/ \~1/ \Ko/ J 

x2 -( ;-  1)'1 2 2~-k-J2 (j- 1)~ 
j = 2  

_~t/ \Ko/ L t / - ( l + r  
1 - ( 2 r / )  - - k ( r - -  1) 

X 
2f l -  1 

+ 
J ~.,7 - (1 + ~) 

(5.24) 

with ~=(/s163 z2 and r/=2-ZL Without loss of generality, we assume 
tr o > K 1 . Then, the following result is obtained: 
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~(zi ,  z2; r) 

= - ( r - 1 ) ( z l - 1 ) l n 2 + ( z ~ + l ) l n 2  

-ln[(1/tCo) ~2 + (1/~Cl) z2 ] 

= (zl + 1) In 2 - ln[(1/~o) z2 + (1/~:~) ~2] 

= (2zl + 1 ) In 2 + z2 In Ko 

= (2z l  + 1) In 2 q - Z  2 in K1 

in region A (5.25a) 

in region B (5.25b) 

in region C (5.25c) 

in region D (5.25d) 

where regions A-D are given in Fig. 8. In the limit r - -*oo ,  ~(zl ,z2;r ) 
yields the free energy function of A: 

aS(z1, z2) = lim ~(zl ,  z2; r) (5.26) 
r ~ o o  

The results (5.25a)-(5.25d) show the existence of phase transitions in 
the thermodynamics of A~ and A2. The phase diagram of A~ and A 2 is 
described in Fig. 8. All of the transitions are of first order. In region A, the 
main contribution to the free energy comes from the reference orbits the 
last point of which falls into the critical line y = c where the derivative of 
Y vanishes. The average value of A~, denoted by (Aa>, tends to negative 

Region D z, 

-1 

0 

Region B 

---1 

~ J  

Region A 

1 Z ,  

Fig. 8. Phase diagram of local Lyapunov exponents on the attractor of (5.1). The heavy lines 
denote the phase boundaries. Regions A - D  are shown. On  the light line in region B, 
�9 (z*, rx ) =  0 holds. The parameter values are •o = 0.35 and ~q = 0.2. 
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infinity. When z~ decreases and goes across the phase boundary of Zl -- !, 
(A~) jumps from - o o  to in 2 at the phase boundary. 

In region B, the typical chaotic orbits contribute to the free energy 
dominantly and the local Lyapunov exponents behave as on a hyperbolic 
chaotic attractor. In fact, we see that the relations (1.1) and (1.2) hold in 
region B: From (5.8), we have g q q ) = ( q - 1 ) l n 2 .  Since (5.25b)gives 
4~(q- 1, 0) = ( q -  I) In 2, (l.2) holds in region B. It turns out from (5.13) 
that the curve given by z~ = r*(q) and z2 = r*(q) is written as 

F( T (!T]_ zx = 1 ~  In + 1 for z l < l  (5.27) 
L\~o/ \ K'I,] _] 

On this curve, it turns out from (5.25b) that 

45(r*, r * ) =  0 in region B (5.28) 

Through region B, (A~)(z~, zs)=ln 2, while (As )  changes smoothly. 
When z 1 decreases and goes across the phase boundary 

1-n~ln I1 + k~Cl/ A for z2~O 

In 1+ for z s > 0  
\~c0/ A 

(A1) jumps from ln2 to in 4 at the phase boundary; ( A 2 )  also has a 
jump there. These discontinuities lead to the breakdown of (1.1) and (1.2) 
in regions C and D. 

In regions C and D, (A1)(zl ,  zs)= In 4. The main contribution to the 
free energy comes from the reference orbits which stay near the fixed point 
x* of F during the time interval k: x*=(0 ,  0) in region C and (1, 1) in 
region D. We have (As)(Zl,  zs) =In ~c 0 in region C and In ~c~ in region D. 
When z 2 goes across the phase boundary of zs--0 from regionC to 
regionD, (As )  jumps from ln~c 0 to ln~q at zs=0.  When calculating 
the fluctuations of the local Lyapunov exponents by using the partition 
function (5.24), we observe the enhancement of the fluctuations near the 
phase boundaries. In Appendix B, a scaling form of (A1) near the phase 
boundary (5.29) is studied. 

The entropy function sa(.~x, A2) may be calculated from the Legen- 
dre-Fenchel transformation of @(zl, zs). The calculation of SA(31, As) is 
given in Appendix A, where SA(71I, As) is derived directly from the parti- 
tion function (5.24). On the assumption of ~c o > ~cl, the following result is 
obtained: 



286 

SA(~I1, A2; r) 

~ -  - - O Q )  for In ~cl > A2, In ~Co < A2, 

A1 < ( 2 - - r )  ln 2, or A1 > l n  4 

= A1 - in 4 - Yl In Yl - Y2 In Y2 

for l n t C l < A 2 < l n ~ c  o and ( 2 - r ) l n 2 < / ] t < l n 2  

= qo(yl, y2) for l ln(~co~q)~<A2<ln~co,  

In 2 < A 1 < l n 4 ,  and Y l > Y ,  

= q)(Y2, Yl) for �89 

In 2 < A1 < in 4, and Y2 > Y, 

where Yl, Y2, Y , ,  and ~o(yl, Y2) are given by 

Y l  = 1 - Y2 - 

- 1  
Y* = I n  2 

I n ( g o / g 1 )  

Shigematsu 

(5.30a) 

(5.30b) 

(5.30c) 

(5.30d) 

~o(y~, Y2) = - I n  2 - Y2 In Y2 - (Yl - -  Y , )  In lYl - Y,I + (1 - y , )  in l1 - Y,I 

(5.33) 

SA 

Fig. 9. The  en t ropy  funct ion sA(A1, A2) of local  L y a p u n o v  exponents  on the a t t r ac to r  of 
(5.1). The m a x i m u m  value of SA(AI, A2) is zero at A l = l n 2  and A2=l ln (~cO~l ) .  The 
pa rame te r  values  are the same as in Fig. 8. 

(5.32) 

(A 2 - in Xl) (5.31) 
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Z2 

-1 

I 

0 

Region B 

-1 

Region A 

1 Z ,  

Fig. 10. Phase diagram of local Lyapunov exponents on the attractor of ~. There exists no 
region corresponding to region D of Fig. 8. The parameter values are the same as in Fig. 8. 

ko 

hm, 
I 

S A  

ln2 A 2  

n4  

'v 1 

Fig. 11. The entropy function of local Lyapunov exponents on the attractor of 1 ~'. The 
parameter values are the same as in Fig. 8. 

822/59/1-2-19 
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SA(A1,A2) is obtained from sA(~ll, A2;r ) in the limit r -+oo and is 
shown in Fig. 9. Note that SA(~I1, A2; r) of (5.30) is different from the 
Legendre-Fenchel transform of ~(zx,z2), which is the convex hull of 
(5.30). 

Let us consider the map F which consists of the same X(x, y) as (5.1) 
and Y ( y ) = 4 y ( 1 - y ) .  The statistical thermodynamics of A is different 
between the maps F and F, while the statistical thermodynamics of et and 

is identical between them. ~3~ F has the fixed points (0, 0) and (1, 1). On 
the other hand, F" has the fixed points (0, 0) and (1, 3/4). A reference orbit 
staying near (0, 0) or (1, 1) of F during the time interval k makes an 
important contribution to the free energy of A. However, one staying near 
(1, 3/4) of F has a contribution of the same order as almost every orbit, so 
that this contribution is less important. An orbit of F passing near (1, 1) 
falls into the neighborhood of the y axis and stays near (0, 0) for a long 
time. Hence, there is no region D in the phase diagram of qS(z~, z2) on the 
attractor of F. Figures 10 and 11 display the phase diagram of q~(zl, z2) 
and the entropy function SA(A1, A2) on the attractor of F. 

5.3. Zeros of  a Par t i t ion  Funct ion 

We have obtained the analytic forms of the partition functions, so that 
the distribution of zeros of the partition functions can be studied easily. In 
order to study the zeros of (5.20), we use (5.24). We have 

Z~(r/, 4; r) ~ zoo/, 4; r) V U k-1 
(1 4) k 1 + 

r / - ( 1  + 4 )  

_}_ (4~1) k-14 ?] ----(1(1 ++ 4)k-114) 1 - (2r/)2r/- k(r- 1 ) 1  

zO(r/, 4; r) has zeros at the origins of the complex t /and 4 planes. The zeros 
of ~k(tl, 4; r) do not lie on the positive real axis in the complex r/plane or 
in the complex ~ plane. (42) In the complex r/plane, m - k - 1  zeros are 
distributed uniformly on the circle I~1 = 1/2 and k - 2  zeros on the circle 
I rll = 1 + ~ if 4 < 1 and I rll = 1 + ~-  1 if 4 ~> 1, for sufficiently large k. As k 
tends to infinity with m/k = r fixed, the zeros lying near the points r/= 1/2 
and r/= 1 + 4 or 1 + 4 -1 fall into these points, respectively. Then, the 
analyticity of ~(z~, z2) breaks down at z~ = 1 and the phase boundary 
(5.29). 

In the ~ plane, the distribution of the zeros is rather complicated. We 
examine roots of the algebraic equation of 4: 

( r / - 2 ) ( l + r  1 ( 4 + 1 - r / ) ~  l + t / k - l ( 4 + l - - t / 4 ) = 0  (5.34) 
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~. = q - 1 and ~ = 1 / ( r / -  1) are roots of (5.34), but not zeros of ~.~(rl, ~; r). 
For zl < - 1  (i.e., ~/> 2), the other roots of (5.34) lie on the circle I~.1 = 1 
in the thermodynamic limit k-+ oQ: {j ( j =  1, 2,..., k - 2 )  denotes a root of 
(5.34), 

27~ 1 1 
~j~-exp(iOj) where Oj=~---~(j+6:), - ~ < 6 j < ~  (5.35) 

For  z~ > - 1 ,  the k - 2  roots of (5.34) lie on the arcs of three circles in the 
limit k -* oo: The k - 2 roots are 

~j -~ exp(i0j) 

1 + Cj ~ q exp(i0j) 

1 + ~f~ ~- ~t exp(i0j) 

where 0j = 2~(j  + @/(k-  1) with 

if 0~<cos(0j2)< 17-11/2 

if cos(0j)> I~/- 11/2 (5.36) 

if cos(0j)> I r l -  11/2 

1 1 - ,: < 5j <~ 3. The distributions of the 
zeros of Zk(~/, ~; r) in the limit k --+ oo are shown in Fig. 12. In the limit 
k --+ 0% the zeros lie on the points in the positive real ~ axis, i.e., ~ = 1 for 
z l <  - 1  and ~ = r / - 1  and ~ =  1 / ( r / -1 )  for - 1  < z ,  <0.  This leads to the 
phase transition of A~ and A 2 at each transition point. On the other hand, 
all roots of (5.36) lie on the left half-plane of Re ~ < 0 for z, > 0. Thus, no 
phase transition occurs for z, > 0 when z2 changes. 

6. D ISCUSSION A N D  S U M M A R Y  

The example in Section 5 shows that (1.1) and (1.2), which hold on a 
hyperbolic chaotic attractor, hold only within a restricted region of q for a 
nonhyperbolic chaotic attractor. We reexamine the relation(1.1) and 
investigate why (1.1) holds in region B and does not hold in the other 
regions. (14) The definition of z*, i.e., (3.23), yields 

3,m( q, Z*, Z*)= ~ [-P(~x; %)]q exp{ --z* lnUx(-x)]  
{,,} 

- v* l n [ / y ( % ) ]  } 

O(n b, m b') for sufficiently large n and m (6.!) 

where b and b' are real and bounded. From (5.19) and (5.20), we have 

l x ( 6 1 " "  a n + ~ )  = l x ( ~ r l  . . .  a n )  exp [kA2( % ; k)]  
(6.2) 

/>.(ak + l+n- - t im+n)  : ly(al + , " "  a,, +,)  exp[kAl(% ; k)]  
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~ ~ j  Re (a) 

-1 

e 

-Irn 
R e  

T - -  (c) 

Fig. 12. The distribution of zeros of the partition function (5.24) on the complex ~ plane. 
The zeros are distributed densely on the arcs of the circles in the thermodynamic limit k ~ ~ .  
The r ~j, and ~k are zeros of (5.36), where t =  1/s=r/-1. The 0~, 0j, and Ok are the 
arguments of ~,, ~j, and ~k, respectively. The 6 ,  6j, and 6k are the deviations of 0 ,  0j, and 
Ok from the uniform distributions. Shown are the cases of (a) zj < - 1 ,  (b) - 1  < zl < 0, and 
(c) O<zl. 

Combining (6.1) and (6.2), we write 

"~n+k,m--k(q, T$x, "C'v)~-~ [ey(l$) ]q e x p { - r *  ln[lx(C~x) ] 

- r *  l n [ / y ( % ) ]  } 

x exp{ -- k[ 'c*Jl(~y ; k) + "c*Az(ay; k)] } 

O(n ~ rn b', k o" ) (6.3) 
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Assuming the Markov partition (3.17), we have 

(t-P r(~ry)] q-~ e x p { - r *  ln[/y(~y)] } 
(%.} 

x P v(~,) exp{ -k[~)*.d~(%; k) + r 'A2(%; k)] }) 

O(m b, k b' ) (6.4) 

If it holds that 

[Pv (~ ) ]q  l~exp{~*ln[ly(ay)]} for a.e.~, 

with respect to ~(%; ~*, r*, r) of (5.19) (6.5) 

then (6.4) yields 

~(r*, rx,*' r) -- 0 (6.6) 

In fact, (6.5) holds in region B of (5.25), called the hyperbolic phase, as 
well as in the examples of Section 4. In the other regions of (5.25), the 
probability of states of particular configurations becomes finite and that of 
all states that 

[Py(~y)]q- '  = 2 m(q- 1)~, exp {r* ln[/y(~y)] } 

vanishes as k tends to infinity. 
The availability of the relation (1.1) for a nonhyperbolic chaotic 

attractor has been pointed out by Hata et alJ 27) They assert that for a non- 
hyperbolic chaotic attractor of a two-dimensional map with constant 
Jacobian, if transition points of phase transitions in the thermodynamics of 
A 1 are known, then phase transitions occur in the thermodynamics of a 
and these transition points are determined by using (1.1). In the system 
(5.1), the nonanalytic point Z l = l  of q)(Zl,Z2) corresponds to the 
transition point q- -2  of C~y in relation (5.28), but there exists no transition 
point of ey corresponding to the point on the phase boundary (5.29). This 
discrepancy may be traceable to the fact that the Jacobian of (5.1) is not 
constant. (12~ However, one should note that (1.1) is generally derived under 
the assumption (6.5) and holds only in the hyperbolic phase. 

In the examples of Section 4, we have seen that the following relation 
holds: 

r z2) = Gx(zl + 1, z2) (6.7) 
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On comparing (5.8) and (5.25b), it turns out that (6.7) holds in region B 
of the nonhyperbolic system (5.1) also. In order to study the relation (6.7), 
we can expand the same argument as in the above: If it holds that 

[Py(6y)] q-1 exp{ -Zy ln[ly(Cry)] } 

exp[-mGy(q,  Vy)] for a.e. 6y 

with respect to tS(r ry, rx, r) of (5.19) 

then we have 

~(vy, ~x; r) = Gx(q, r x ) -  Gy(q, ry) 

(6.8) 

(6.9) 

~(ry, vx; r) must be independent of q. Actually, inserting (5.8) and (5,9) 
into (6.9), we have 

~(vy, Vx; r) = Gx(vy+ 1, "cx) (6.10) 

so that (5.25b) is obtained in the hyperbolic phase. Hence, one conjectures 
that not only (1.1) and (1.2), but also (6.7) holds in the hyperbolic phase 
of a chaotic attractor. 

We have studied static and dynamic properties of a chaotic attractor 
of a two-dimensional map which belongs to a particular class of piecewise 
continuous invertibte maps. Coverings of natural size to cover the attractor 
have been introduced, so that microscopic information of the attractor is 
written on each box composing the cover: The probability of a point in a 
box gives information on the natural measure, and the size distribution of 
the boxes describes the complexity of the geometric structure of the attrac- 
tor. The statistical thermodynamics of the scaling indices and size indices 
of a box has been formulated in a natural way by using symbolic dynamics. 
The attractor turned out to have a generalized dimension which is the sum 
of generalized partial dimensions. Generalized entropies have also been 
studied and a relation between the generalized dimensions and entropies 
has been obtained. Illustrative examples, two of a hyperbolic chaotic 
attractor and one of a nonhyperbolic chaotic attractor, were studied. 
Analytic forms of the free energy functions of the scaling indices and size 
indices of a box have been obtained not only for the hyperbolic examples, 
but also for the nonhyperbolic example. For these examples, the statistical 
thermodynamics of local Lyapunov exponents has also been studied and a 
relation between the thermodynamics of scaling indices and of local 
Lyapunov exponents has been investigated. For the nonhyperbolic exam- 
ple, the free energy and entropy functions of local Lyapunov exponents 
have been obtained in analytic forms. These results display the existence of 
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phase transitions in the thermodynamics of local Lyapunov exponents. A 
phase transition is seen in the thermodynamics of the scaling indices and 
size indices of a box also. Zei'os of the partition function have been studied 
in relation to the violation of the analyticity of the free energy function. 
The zeros are distributed on arcs of circles in the thermodynamic limit. 

APPENDIX  A. DERIVATION O F s ^ ( A  1, A z ; r )  

The entropy function of A1 and A 2 is defined in terms of the proba- 
bility density Wa(~l ,  A2; k, r) as 

sA(A1,A2;r)--lim~lnWA A ~ , A z ; k , ~ - = r f i x e d  (A.1) 

WA(A1, A2; k, r) describes the partition function (5.20) as follows: 

Zk(z 1 , z2; r) = ff dA 1 dA2 WA(A1, A2; k, r) 

x e x p [ - k ( z l A l  + zzA2)] (A.2) 

By using (5.24), one can write Z~(zl, z2; r) as 

rn k k 

Zk(zl,zz;r)= ~ ~ exp{-[k(z~ + l ) - i (z~- l )+jZl] ln2}  
t = 2  j = 2  

x [~oJ~=(Ko/~:l)~ 

~- Is163 ](KO z2 ~- KlZ2) k -  j ( h . 3 )  

for k >  1. Let us divide (A.3) into two terms and consider the term 

~ k  ~, :~: (knJ)  2 (k+')exp[--(k--i+j)zl ln2] 
i = 2  j = 2  

xexp[- ( j - l+n)z21n~co-(k - j -n+l)z=ln~q]  (A.4) 

Comparing (A.2) and (A.4) leads to 

A~ = ( 1  - ilk +j/k) in 2 (A.5a) 

A2 = In ~1 + [ ( j -  1 )/k + n/k] ln(~c0/~ q ) (A.5b) 

For simplicity, assume ~c o > K 1. Then, we have 

(2 - r) In 2 ~< A~ ~< in 4, In K1 ~< A2 ~ In K o (A.6) 
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Using Stirling's approximation and replacing the summations with 
integrations, we can write (A.3) as 

k3 ff fln~:o ~(l+x) ln2 
b In 2 dx dA 2 d711 Ubx+ln ~c I o(2--r+x) ln 2 

x exp[ -k i l l ( x ;  711, A2) - k(z1711 + z2A2)] 

where b - ln(~Co/~Cl), 

Hi(x; 711, A2) - -711 + In 4 + x In 2 

- ( 1 - x ) l n ( 1 - x ) + ( y l - x ) l n ( y l - x ) +  y21n y2 (A.7) 

and yl and Y2 are given by (5.31). Hi(x; 711, A2) is a monotone-increasing 
function of x on the interval [0, Yl]- Since k~>l, the maximum value 
approximation can be used in the integration of x. The contribution to the 
probability density from (A.3) becomes 

k 2 
W1 - b ln(2/yl) exp[ - k i l l ( 0 ;  711, A2)] 

for ( 2 - r ) l n  2 < 71~ < l n  2 

k 2 
b ln[(1 - y,)/(y~ - y , ) ]  exp[- - kH~(y , ;  711, A2)] 

for In 2 -..< 711 -.< In 4 and yl > y ,  (A.8) 

where y ,  is given by (5.32). The contribution of the other term to the 
probability density is calculated in the same way. 

k 2 
W2 "- b ln(Z/y2) exp[ -kH2(0 ;  711, A2)] 

for ( 2 -  r) ln 2 < 711 < l n  2 

k 2 
- b ln[-(1 - Y,)/(Y2 - Y,)]  e x p [ - k H z ( y ,  ;711, A2)] 

for In 2 ...< 711 -..< In 4 and y2 > y , (A.9) 
where 

Hz(X; 711, A2) 

- 711+1n 4 + x l n  2 

- (1 - x )  l n ( 1  - x )  + (Y2 - x )  l n ( y ~  - x )  + Yl In Yl 

Substituting WA(711, A2;k, r)= WI + W2 into (A.1), we get (5.30). 
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A P P E N D I X  B. SCALING F O R M  OF <AI>  NEAR A 
T R A N S I T I O N  POINT 

For a phase transition of the local Lyapunov exponents in Section 5.2, 
a scaling form of the mean value of A~ is studied near its transition 
point. (2~ We consider the transition between regions B and C so that 
z 2 < 0. The mean of A 1 is given by 

1 
lira ~77Zl In 3~(Zl (Ax>(Z , , z2 ;k )= - ~  

From (5.24), (A~> is written as 

, z2;  r) (B .1)  

where u = 2z~[1 + (Ko/~q) z2] and 

1 -  u k 1 (~O/~l)Z2(k 1)__uk 1 
g ( u ) - - - ~  (B.3) 

1 - u  (~o /~ , )Z~-u  

Since u =  1 at the transition point, we assume 0~< t u - I I  ~ 1. We also 
assume IZzl > pln ul/ln(~Co/Tq), that is, except near the triple point ( -  1, 0). 
For z2<0  and ~Co>tq, the second term on the lhs of (B.3) is always 
negligible. Upon putting y = k In u, (A~ > turns out to be 

(ln2) 1 + +Ag (B.4) 
y eY-1  

The second term of (B.4) is always negligible for rY] <Yo such that 
l ~ y o ~ k .  Consider the small line segment (zl, z2)=(Zl~- t ,  z2c-at) ,  
0 ~ [ t ] ~ l ,  which transversely passes the phase boundary through the 
transition point (zlc, z2c). As (zlc, z2c) is approached on this segment, 
(A1)  takes the following scaling form: 

with 

( , 1 )  
( A l > ( z l c - t ,  Z 2 c - a t ; k ) = ( l n 2  ) 1+ e y -  

y 1 

for lyl < y o  (B.5) 

y = -k t[a(1  - 2 zl') ln(tr + In 23 (B.6) 

It is easy to find that <(AA1)  2 > ~ ~<A 1 >/(~(kZl) , the variance of A1, has a 
scaling form because Ag of (B.4) is analytic for z~. 

, ln2  
<A~> = l n 4 -  k g(u) ~u g (u )+O (B.2) 
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